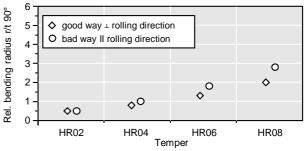
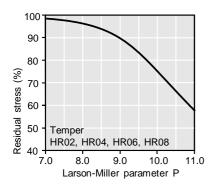

C19020 CuNi2SnP

C19020 is the "sister" copper alloy to C19025 and is also one of the more versatile copper alloys in the Wieland product portfolio. Similar in all properties, but providing an increase of 10 %IACS conductivity with slightly lower strength and better formability. C19020 meets the high demands of automotive, electronics and electrical markets. The automotive terminal design engineers should consider this alloy in applications requiring slightly better electrical performance and more stringent formation of bends.


Chemical composition (Reference)				
Ni	2 %			
Sn	0.6 %			
Р	0.1 %			
Cu	balance			

Physical properties (Reference values at room temperature)							
Electrical conductivity	29	MS/m	50	%IACS			
Thermal conductivity	200	W/(m·K)	115	Btu·ft/(ft²·h·℉)			
Coefficient of electrical resistance*	1.9	10 ⁻³ /K	1.1	10 ⁻³ /℉			
Coefficient of thermal expansion*	16.9	10 ⁻⁶ /K	9.4	10⁻ ⁶ /℉			
Density	8.91	g/cm ³	0.322	lb/in ³			
Modulus of elasticity	129	GPa	18,800	ksi			
Specific heat	0.377	J/(g⋅K)	0.090	Btu/(lb·℉)			
Poisson's ratio	0.34		0.34				
* Between 0 and 300 ℃							

Mechanical properties (values in brackets are for information only)								
Temper	Tensile strength R _m		Yield stren	gth R _{p0.2}	Elongation A ₅₀ / A _{2"}			
	MPa	ksi	MPa	ksi	%			
HR02	400-485	58-70	(435)	(63)	≥ 5			
HR04	450-510	65-74	(460)	(67)	≥ 3			
HR06	490-550	71-80	(505)	(73)	≥ 3			
HR08	≥ 530	≥ 77	≥ 510	≥ 74	≥ 2			


Bendability^{*} (Strip thickness t ≤ 0.4 mm)

* Typical 90° bend formability. Data for reference only.

C19020 CuNi2SnP

Thermal stress relaxation

Stress remaining after thermal relaxation as a function of Larson-Miller parameter P

(F. R. Larson, J. Miller, Trans ASME74 (1952) 765–775) given by: P = $(20 + \log(t))^{*}(T + 273)^{*}0.001$.

Time t in hours, temperature T in ℃.

Example: P = 9 is equivalent to 1,000 h/118 ℃.

Measured on stress relief annealed specimens parallel to rolling direction.

Total stress relaxation depends on the applied stress level.

Furthermore, it is increased to some extent by cold deformation.

Fatigue strength

The fatigue strength is defined as the maximum bending stress amplitude which a material withstands for 10^7 load cycles under symmetrical alternate load without breaking. It is dependent on the temper tested and is about 1/3 of the tensile strength R_m .

Types and formats available

- Standard coils with outside diameters up to 1,400 mm
- Traverse-wound coils with drum weights up to 1.5 t

infona@wieland.com | wieland-rolledproductsna.com

- Multicoil up to 5 t
- Hot-dip tinned strip
- Contour-milled strip

Dimensions available

- Strip thickness from 0.10 mm, thinner gauges on request
- Strip width from 3 mm, however min. 10 x strip thickness

 Wieland-Werke AG
 Graf-Arco-Straße 36
 89079 Ulm
 Germany

 info@wieland.com
 wieland.com
 wieland.com

 Wieland Rolled Products North America
 4803 Olympia Park Plaza, Suite 3000
 Louisville, Kentucky
 USA

This printed matter is not subject to revision. No claims can be derived from it unless there is evidence of intent or gross negligence. The product characteristics are not guaranteed and do not replace experts' advice.